Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.30.22273186

ABSTRACT

Background: With the onset of the COVID-19 pandemic in early 2020 there was a drastic reduction in the number of dengue cases in Sri Lanka, with an increase towards the end of 2021. We sought to study the contribution of virological factors, human mobility, school closure and mosquito factors in affecting these changes in dengue transmission in Sri Lanka during this time. Methods and findings: To understand the reasons for the differences in the dengue case numbers in 2020 to 2021 compared to previous years, we determined the association between the case numbers in Colombo (which has continuously reported the highest number of cases) with school closures, stringency index, changes in dengue virus (DENV) serotypes and vector densities. There was a 79.4% drop in dengue cases from 2019 to 2020 in Colombo. A significant negative correlation was seen with the number of cases and school closures (Spearmans r=-0.4732, p=<0.0001) and a negative correlation, which was not significant, between the stringency index and case numbers (Spearmans r= -0.3755 p=0.0587). There was no change in the circulating DENV serotypes with DENV2 remaining the most prevalent serotype by early 2022 (65%), similar to the frequencies observed by end of 2019. The Aedes aegypti premise and container indices showed positive but insignificant correlations with dengue case numbers (Spearman r= 0.8827, p=0.93). Conclusions: Lockdown measures, especially school closures seemed to have had a significant impact on the number of dengue cases, while the vector indices had a limited effect.


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.05.22270436

ABSTRACT

Background: The worst SARS-CoV-2 outbreak in Sri Lanka was due to the two Sri Lankan delta sub-lineages AY.28 and AY.104. We proceeded to further characterize the mutations and clinical disease severity of these two sub-lineages. Methods: 705 delta SARS-CoV-2 genomes sequenced by our laboratory from mid-May to November 2021 using Illumina and Oxford Nanopore were included in the analysis. The clinical disease severity of 440/705 individuals were further analyzed to determine if infection with either AY.28 or AY.104 was associated with more severe disease. Sub-genomic RNA (sg-RNA) expression was analyzed using periscope. Results: AY.28 was the dominant variant throughout the outbreak, accounting for 67.7% of infections during the peak of the outbreak. AY.28 had three lineage defining mutations in the spike protein: A222V (92.80%), A701S (88.06%), and A1078S (92.04%) and seven in the ORF1a: R24C, K634N, P1640L, A2994V, A3209V, V3718A, and T3750I. AY.104 was characterized by the high prevalence of T95I (90.81%) and T572L (65.01%) mutations in the spike protein and by the absence of P1640L (94.28%) in ORF1a with the presence of A1918V (98.58%) mutation. The mean sgRNA expression levels of ORF6 in AY.28 were significantly higher compared to AY.104 (p < 0.0001) and B.1.617.2 (p < 0.01). Also, ORF3a showed significantly higher sgRNA expression in AY.28 compared to AY.104 (p < 0.0001). There was no difference in the clinical disease severity or duration of hospitalization in individuals infected with these sub lineages. Conclusions: Therefore, AY.28 appears to have a fitness advantage over the parental delta variant (B.1.617.2) and AY.104 possibly due to the A222V mutation. AY.28 also had a higher expression of sg-RNA compared to other sub-lineages. The clinical implications of these should be further investigated.


Subject(s)
Seizures
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.05.21267303

ABSTRACT

As different SARS-CoV-2 variants emerge and with the continuous evolution of sub-lineages of the delta and other variants, it is crucial that all countries carry out sequencing of at least >1% of their infections, in order to detect emergence of variants with higher transmissibility and with ability to evade immunity. However, as many resource-poor countries are unable to sequence adequate number of viruses, we compared to usefulness of a commercially available multiplex real-time PCR assay to detect important single nucleotide polymorphisms (SNPs) associated with the variants and compared the sensitivity, accuracy and cost effectiveness of the Illumina sequencing platform and the Oxford Nanopore Technologies, (ONT) platform. 138/143 (96.5%) identified as the alpha and 36/39 (92.3%) samples identified as the delta variants due to the presence of lineage defining SNPs by the multiplex real time PCR, were assigned to the same lineage by either of the two sequencing platforms. 34/37 of the samples sequenced by ONT had <5% ambiguous bases, while 21/37 samples sequenced using the Illumina generated <15% ambiguous bases. However, the mean PHRED scores averaged at 32.35 by Illumina reads but 10.78 in ONT. Sub-consensus single nucleotide variations (SNV) were highly correlated between both platforms (R2=0.79) while indels showed a weaker correlation (R2=0.13). Although the ONT had a slightly higher error rate compared to the Illumina technology, it achieved higher coverage with a lower number of reads, generated less ambiguous bases and was significantly cheaper than Illumina sequencing technology.

4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.05.21256384

ABSTRACT

Since identification of the first Sri Lankan individual with the SARS-CoV-2 in early March 2020, small clusters that occurred were largely contained until the current extensive outbreak that started in early October 2020. In order to understand the molecular epidemiology of SARS-CoV-2 in Sri Lanka, we carried out genomic sequencing overlaid on available epidemiological data. The B.1.411 lineage was most prevalent, which was established in Sri Lanka and caused outbreaks throughout the country. The estimated time of the most recent common ancestor of this lineage was 10th August 2020 (95% lower and upper bounds 6th July to 7th September), suggesting cryptic transmission may have occurred, prior to a large epidemic starting in October 2020. Returning travellers were identified with infections caused by lineage B.1.258 , as well as the more transmissible B.1.1.7 lineage. Ongoing genomic surveillance in Sri Lanka is vital as vaccine roll-out increases.

SELECTION OF CITATIONS
SEARCH DETAIL